Savings is a social choice, too . . .

Marc Bellemare’s blog pointed me to an interesting paper by Pascaline Dupas and Jonathan Robinson titled “Why Don’t the Poor Save More? Evidence from Health Savings Experiments.”  It is an interesting paper, taking a page from the RCT4D literature to test some different tools for savings in four Kenyan villages.  I’m not going to wade into the details of the paper or its findings here (they find some tools to be more effective than others at promoting savings for health expenditures), because they are not what really caught me about this paper.  Instead, what struck me was the absence of a serious consideration of “the social” in the framing of the questions asked and the results.  Dupas and Robinson expected three features to impact health savings: adequate storage facilities/technology, the ability to earmark funds, and the level of social commitment of the participant.  The social context of savings (or, more accurately, barriers to savings) are treated in what I must say is a terribly dismissive way [emphases are mine]:

a secure storage technology can enable individuals to avoid carrying loose cash on their person and thus allow people to keep some physical distance between themselves and their money. This may make it easier to resist temptations, to borrow the terminology in Banerjee and Mullainathan (2010), or unplanned expenditures, as many of our respondents call them. While these unplanned expenditures include luxury items such as treats, another important category among such unplanned expenditures are transfers to others.

A storage technology can increase the mental costs associated with unplanned expenditures, thereby reducing such expenditures. Indeed, if people use the storage technology to save towards a specic goal, such as a health goal in our study, people may consider the money saved as unavailable for purposes other than the specic goal – this is what Thaler (1990) coined mental accounting. By enabling such mental accounting, a designated storage place may give people the strength to resist frivolous expenditures as well as pressure to share with others, including their spouse.

I have seen many cases of unplanned expenditures to others in my fieldwork.  Indeed, my village-based field crews in Ghana used to ask for payment on as infrequent a basis as possible to avoid exactly these sorts of expenditures.  They would plan for large needed purchases, work until they had earned enough for that purchase, then take payment and immediately make the purchase, making their income illiquid before family members could call upon them and ask for loans or handouts.
However, the phrasing of Dupas and Robinson strikes the anthropologist/ geographer in me as dismissive.  These expenses are seen as “frivolous”, things that should be “resisted”.  The authors never consider the social context of these expenditures – why people agree to make them in the first place.  There seems to be an implicit assumption here that people don’t know how to manage their money without the introduction of new tools, and that is not at all what I have seen (albeit in contexts other than Kenya).  Instead, I saw these expenditures as part of a much larger web of social relations that implicates everything from social status to gender roles – in this context, the choice to give out money instead of saving it made much more sense.
In short, it seems to me that Dupas and Robinson are treating these savings technologies as apolitical, purely technical interventions.  However, introducing new forms of savings also intervenes in social relations at scales ranging from the household to the extended family to the community.  Thus, the uptake of these forms of savings will be greatly effected by contextual factors that seem to have been ignored here.  Further, the durability of the behavioral changes documented in this study might be much better predicted and understood – from my perspective, the declining use of these technologies over the 33 month scope of the project was completely predictable (the decline, that is, not the size of the decline).  Just because a new technology enables savings that might result in a greater standard of living for the individual or household does not mean that the technology will be seen as desirable – instead, that standard of living must also work within existing social roles and relations if these new behaviors are to endure.  Therefore, we cannot really explain the declining use of these technologies over time . . . yet development is, to me, about catalyzing enduring change.  While this study shows that the introduction of these technologies has at least a short term transformative effect on savings behavior, I’m not convinced this study does much to advance our understanding of how to catalyze changes that will endure.



Wait, economists get to just guess and call it explanation?

An interesting review of Paul Collier’s The Bottom Billion and Wars, Guns and Votes by Yale Anthropologist Mike McGovern has gotten a little bit of attention recently in development circles, speaking as it does to ongoing debates about the role of statistical analysis, what counts as explanation, and where qualitative research fits into all of this.  I will take up McGovern’s good (but incomplete, in my opinion) review in another post.  Here, I needed to respond to a blog entry about this review.
On the Descriptive Statistics, Causal Inference and Social Science blog, Andrew Gelman discusses McGovern’s review.  While there is a lot going on in this post, one issue caught my attention in particular.  In his review, McGovern argues that “Much of the intellectual heavy lifting in these books is in fact done at the level of implication or commonsense guessing,” what Gelman (quoting Fung) calls “story time”, the “pivot from the quantitative finding to the speculative explanation.”  However, despite the seemingly dismissive term for this sort of explanation, in his blog post Gelman argues “story time can’t be avoided.” His point:

On one hand, there are real questions to be answered and real decisions to be made in development economics (and elsewhere), and researchers and policymakers can’t simply sit still and say they can’t do anything because the data aren’t fully persuasive. (Remember the first principle of decision analysis: Not making a decision is itself a decision.)

From the other direction, once you have an interesting quantitative finding,of course you want to understand it, and it makes sense to use all your storytelling skills here. The challenge is to go back and forth between the storytelling and the data. You find some interesting result (perhaps an observational data summary, perhaps an analysis of an experiment or natural experiment), this motivates a story, which in turn suggests some new hypotheses to be studied.

Now, on one hand I take his point – research is iterative, and answering one set of questions (or one set of new data) often raises new questions which can be interrogated.  But Gelman seems to presume that explanation only comes from more statistical analysis, without considering what I saw as McGovern’s subtle point: qualitative social scientists look at explanation, and do not revert to story time to do so (good luck getting published if you do).  We spend a hell of a lot of time fleshing out the causal processes behind our observations, including establishing rigor and validity for our data and conclusions, before we present stories.  This is not to say that our explanations are immediately complete or perfect, nor is it to suggest that our explanations do not raise new questions to pursue.  However, there is no excuse for the sort of “story time” analysis that McGovern is pointing out in Collier’s work – indeed, I would suggest that is why the practice is given a clearly derisive title.  That is just guessing, vaguely informed by data, often without even thinking through alternative explanations for the patterns at hand (let alone presenting those alternatives).
I agree with Gelman’s point, late in the post – this is not a failing of statistics, really.  It is a failure to use them intelligently, or to use appropriate frameworks to interpret statistical findings.  It would be nice, however, if we could have a discussion between quant and qual on how to avoid these outcomes before they happen . . . because story time is most certainly avoidable.

On explanation in development research

I was at a talk today where folks from Michigan State were presenting research and policy recommendations to guide the Feed the Future initiative.  I greatly appreciate this sort of presentation – it is good to get real research in the building, and to see USAID staff that have so little time turn out in large numbers to engage.  Once again, folks, its not that people in the agencies aren’t interested or don’t care, its a question of time and access.
In the course of one of the presentations, however, I saw a moment of “explanation” for observed behavior that nicely captures a larger issue that has been eating at me as the randomized control trials for development (RCT4D) movement gains speed . . . there isn’t a lot of explanation there.  There is really interesting data, rigorously collected, but explanation is another thing entirely.
In the course of the presentation, the presenter put up a slide that showed a wide dispersion of prices around the average price received by farmers for their maize crops around a single market area (near where I happen to do work in Malawi).  Nothing too shocking there, as this happens in Malawi, and indeed in many places.  However, from a policy and programming perspective, it’s important to know that the average price is NOT the same thing as what a given household is taking home.  But then the presenter explained this dispersion by noting (in passing) that some farmers were more price-savvy than others.
1) there is no evidence at all to support this claim, either in his data or in the data I have from an independent research project nearby
2) this offhand explanation has serious policy ramifications.
This explanation is a gross oversimplification of what is actually going on here – in Mulanje (near the Luchenza market area analyzed in the presentation), price information is very well communicated in villages.  Thus, while some farmers might indeed be more savvy than others, the prices they are able to get are communicated throughout the village, thus distributing that information.  So the dispersion of prices is the product of other factors.  Certainly desperation selling is probably part of the issue (another offhand explanation offered later in the presentation).  However, what we really need, if we want a rigorous understanding of the causes of this dispersion and how to address it, is a serious effort to grasp the social component of agriculture in this area – how gender roles, for example, shape household power dynamics, farm roles, and the prices people will sell at (this is a social consideration that exceeds explanation via markets), or how social networks connect particular farmers to particular purchasers in a manner that facilitates or inhibits price maximization at market.  These considerations are both causal of the phenomena that the presenter described, and the points of leverage on which policy might act to actually change outcomes.  If farmers aren’t “price savvy”, this suggests the need for a very different sort of intervention than what would be needed to address gendered patterns of agricultural strategy tied to long-standing gender roles and expectations.
This is a microcosm of what I am seeing in the RCT4D world right now – really rigorous data collection, followed by really thin interpretations of the data.  It is not enough to just point out interesting patterns, and then start throwing explanations out there – we must turn from rigorous quantitative identification of significant patterns of behavior to the qualitative exploration of the causes of those patterns and their endurance over time.  I’ve been wrestling with these issues in Ghana for more than a decade now, an effort that has most recently led me to a complete reconceptualization of livelihoods (shifting from understanding livelihoods as a means of addressing material conditions to a means of governing behaviors through particular ways of addressing material conditions – the article is in review at Development and Change).  However, the empirical tests of this approach (with admittedly tiny-n size samples in Ghana, and very preliminary looks at the Malawi data) suggest that I have a better explanatory resolution for explained behaviors than possible through existing livelihoods approaches (which would end up dismissing a lot of choices as illogical or the products of incomplete information) – and therefore I have a better foundation for policy recommendations than available without this careful consideration of the social.
See, for example, this article I wrote on how we approach gender in development (also a good overview of the current state of gender and development, if I do say so myself).  I empirically demonstrate that a serious consideration of how gender is constructed in particular places has large material outcomes on whose experiences we can understand, and therefore the sorts of interventions we might program to address particular challenges.  We need more rigorous wrestling with “the social” if we are going to learn anything meaningful from our data.  Period.
In summary, explanation is hard.  Harder, in many ways, than rigorous data collection.  Until we start spending at least as much effort on the explanation side as we do on the collection side, we will not really change much of anything in development.